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APPARENT MASS COEFFICIENT IN HORIZONTAL HYDRODYNAMIC IMPACT OF A FLOATING SPHERE
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ABSTRACT: The practical three-dimensional problem of horizontal
hydrodynamic impact of a floating body was examined for the first
time by E. L. Blokh [1] who obtained a solution for the case of a
sphere half-submerged in an incompressible fluid, V. I, Mosakovskii
and V, L. Rvachev [2] obtained a solution of the same problem in
closed form.

The results of [1,2] are extended below to the case of an arbitrary
depth of submergence. Asin [1,2], it is considered that there is no
separation of the fluid from the wetted surface of the sphere.

§1. Let a sphere of unit radius x* —l—y2 +(z — h)* = 1 float in an
ideal fluid filling the half-space z = 0. As a result of a suddenly ap-
plied impulsive force, the sphere, which at first is not moving is set
in translational motion along the x-axis with a speed U,. Then [3],
in the absence of mass irnpulsive forces, the motion of the fluid is
potential after the impact, and the velocity potential ¢* is a harmonic
function connected with the impulsive pressure p, by the relationship
P = —p¥*, where p is the density of the fluid.

On the free surface of the fluid

o* = 0. (1.1

On the wetted surface of the sphere, on the strength of the assump-
tion of impact without separation

OQ* [ On = vy, (1.2)

Here vy, is the projection on the normal to the surface of the veloc-

ity of points on the surface,
At infinity, the flnid is not in motion, and

grad ¥ = 0, (1.3)

The potential flow of the fluid is defined uniquely by conditions
(1.1)—(1.3).
§2, Let |h| < 1. We introduce the toroidal coordinates
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If B= By is the equation of the wetted part of the sphere, then h =
= cos By and ¢ = sin By. The free surface of the fluid has the equation
8= 0. The boundary conditions (1.1) and (1.2) take the form
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We shall seek the solution in the form of an expansion into a gen-
eralized Meller-Fok integral [4] with respect to the associated Legendre
functions
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In this case, the first condition of (2.1) is satisfied, and the second
condition is satisfied if
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In finding A(7), the left side of (2.2) was expanded into an in-
tegral with respect to the associated functions, which is achieved by

differentiating the following relationship with respect to «:
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§8, Let h > 1. We introduce the bispherical coordinates
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Let B= B be the equation of the sphere ¢ = sh 8, and h = ch 8;.
The equation of the free surface is 8= 0, The boundary conditions
(1.1) and (1.2) are written in the form

o9 c2Ugysin o cos v
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Here ¥ a, 8,7) = #%(x,y,z). We shall seek the solution in the form
of a series [5]

Q. B 1=

=cUycos ¢ Y ch i — cosa Z B, sh (n+~;~> BiP,t (cos @), (3.2)

n=1

The first condition of (3.1) is satisfied. In order to satisfy the
second condition, we differentiate the known expansion with respect
to
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and comparing the result with 8¢/88; obtained from (3.2), wefind that
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In particular, the expression for the potential on the surface of the
sphere is of the form
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$4, The apparent mass coefficient of the sphere acting along the
X-axis
P, ¢
Ay=— 7N (P, = SS p;cos(n, x) ds).
(s)

Here P; is the resultant of the impulsive pressure forces directed
opposite to the motion of the sphere; V is the volume of the displaced
fluid.

In the case of a partially submerged sphere, we have
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In these calculations, we make use of known integral representa-
tions of associated Legendre functions [5].
ifh>1, then

A (R) =2+
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Taking the asymptotic behavior of the functions Qp and Qp' into
consideration, we can obtain from (4.2) A(®) = 1/2, which corres-
ponds to a sphere in an unbounded fluid [5].

The results of the calculations performed with formulas (4.1) and
(4.2) with a relative error < 2% are presented in the figure,

REFERENCES

1. E. L. Blokh, "Horizontal hydrodynamic impact of a sphere on
a free fluid surface,” PMM, vol. 17, no. 5, 1953,

2, V. I. Mossakovskii and V. L. Rvachev, "The problem of
horizontal hydrodynamic impact of a sphere,” PMM, vol., 22, no, 6,
1958.

3. L. I, Sedov, Two-Dimensional Problems of Hydrodynamics
and Aerodynamics [in Russian], Gostekhizdat, 1950.

4. Ya, 8. Uflyand, Integral Transforms in Problems of the Theory
of Elasticity [in Russian], Izd-vo AN SSSR, 1963,

5. N. N. Lebedev, Special Functions and Their Applications [in
Russian], Fizmatgiz, 1963.

6, E. V. Hobson, Theory of Spherical and Ellipsoidal Functions
[Russian translation], Izd-vo inostr, lit,, 1952,

8 July 1965 Khar' kov



