S. E. Evdokimov and V. L. Rvachev

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 121-123, 1966

ABSTRACT: The practical three-dimensional problem of horizontal hydrodynamic impact of a floating body was examined for the first time by E. L. Blokh [1] who obtained a solution for the case of a sphere half-submerged in an incompressible fluid. V. I. Mosakovskii and V. L. Rvachev [2] obtained a solution of the same problem in closed form.

The results of $[1,2]$ are extended below to the case of an arbitrary depth of submergence. As in $[1,2]$, it is considered that there is no separation of the fluid from the wetted surface of the sphere.
§1. Let a sphere of unit radius $x^{2}+y^{2}+(z-h)^{2}=1$ float in an ideal fluid filling the half-space $z \geq 0$. As a result of a suddenly applied impulsive force, the sphere, which at first is not moving is set in translational motion along the x-axis with a speed U_{0}. Then [3], in the absence of mass impulsive forces, the motion of the fluid is potential after the impact, and the velocity potential φ^{*} is a harmonic function connected with the impulsive pressure P_{t} by the relationship $p_{t}=-\rho \varphi^{w}$, where ρ is the density of the fluid.

On the free surface of the fluid

$$
\begin{equation*}
\varphi^{*}=0 \tag{1.1}
\end{equation*}
$$

On the wetted surface of the sphere, on the strength of the assumption of impact without separation

$$
\begin{equation*}
\partial \varphi^{*} / \partial n=v_{n} \tag{1.2}
\end{equation*}
$$

Here v_{n} is the projection on the normal to the surface of the velocity of points on the surface.

At infinity, the fluid is not in motion, and

$$
\begin{equation*}
\operatorname{grad} \varphi^{*}=0 \tag{1.3}
\end{equation*}
$$

The potential flow of the fluid is defined uniquely by conditions (1.1)-(1.3).
§2. Let $|\mathrm{h}|<1$. We introduce the toroidal coordinates

$$
x=\frac{c \operatorname{sh} \alpha \cos \gamma}{\operatorname{ch} \alpha-\cos \beta}, \quad y=\frac{c \operatorname{sh} \alpha \sin \gamma}{\operatorname{ch} \alpha-\cos \beta}, \quad z=\frac{c \sin \beta}{\operatorname{ch} \alpha-\cos \beta}
$$

If $B=\beta_{0}$ is the equation of the wetted part of the sphere, then $h=$ $=\cos B_{0}$ and $c=\sin B_{0}$. The free surface of the fluid has the equation $\beta=0$. The boundary conditions (1.1) and (1.2) take the form

$$
\varphi^{*}=0, \quad \beta=0, \quad \frac{\partial \varphi}{\partial \beta}=-\frac{c^{2} U_{0} \operatorname{sh} \alpha \cos \gamma}{(\operatorname{ch} \alpha-h)^{2}}, \quad \beta=\beta_{0} .
$$

We shall seek the solution in the form of an expansion into a generalized Meller-Fok integral [4] with respect to the associated Legendre functions

$$
\begin{gather*}
\varphi(\alpha, \beta, \gamma)= \\
=c^{2} U_{0} \cos \gamma \sqrt{\operatorname{ch} \alpha-\cos \beta} \int_{0}^{\infty} A(\tau) \operatorname{sh} \beta \tau P_{-1 / 2+i \tau}^{1}(\operatorname{ch} \alpha) d \tau . \tag{2.2}
\end{gather*}
$$

In this case, the first condition of (2.1) is satisfied, and the second condition is satisfied if

$$
\begin{gathered}
A(\tau)=\frac{F(\tau) \sqrt{\operatorname{ch} \alpha-h}}{\tau \operatorname{ch} \beta_{0} \tau\left(\operatorname{ch} \alpha-m_{0}\right)} \\
\left(F(\tau)=\frac{\pi \tau \operatorname{th} \pi \tau}{\operatorname{ch} \pi \tau} P_{-\frac{1}{2}+i \tau}^{\frac{1}{2} \tau}(h), m_{0}=h-\frac{c}{2 \tau} \operatorname{th} \beta_{0} \tau\right) .
\end{gathered}
$$

In finding $A(\tau)$, the left side of (2.2) was expanded into an integral with respect to the associated functions, which is achieved by
differentiating the following relationship with respect to α :

$$
\begin{equation*}
\frac{1}{\operatorname{ch} \alpha-h}=\int_{0}^{\infty} F(\tau) P_{-1 / 2+i \tau}(\operatorname{ch} \alpha) d \tau . \tag{2.3}
\end{equation*}
$$

In particular, on the wetted surface

$$
\begin{gathered}
\varphi\left(\alpha, \beta_{0}, \tau\right)=-2 c U_{0}\left[\frac{\operatorname{sh} \alpha}{\operatorname{ch} \alpha-h}+\right. \\
\left.+(\operatorname{ch} \alpha-h)^{2} \int_{0}^{\infty} \frac{F(\tau)}{\operatorname{ch} \alpha-m_{0}} P_{-1 / 2 \div i \tau}^{1}(\operatorname{ch} \alpha) d \tau\right] \cos \gamma .
\end{gathered}
$$

\$3. Let $h>1$. We introduce the bispherical coordinates

$$
x=\frac{c \sin \alpha \cos \gamma}{\operatorname{ch} \beta-\cos \alpha}, \quad y=\frac{c \sin \alpha \sin \gamma}{\operatorname{ch} \beta-\cos \alpha}, \quad z=\frac{c \operatorname{sh} \beta}{\operatorname{ch} \beta-\cos \alpha} .
$$

Let $\beta=\beta_{1}$ be the equation of the sphere $c=\operatorname{sh} \beta$, and $h=\operatorname{ch} \beta_{1}$. The equation of the free surface is $\beta=0$. The boundary conditions (1.1) and (1.2) are written in the form

$$
\begin{equation*}
\varphi=0, \quad \beta=0, \quad \beta=\beta_{1}, \quad \frac{\partial \varphi}{\partial \beta}=-\frac{c^{2} U_{0} \sin \alpha \cos \gamma}{(h-\cos \alpha)^{2}} . \tag{3.1}
\end{equation*}
$$

Here $\varphi(\alpha, \beta, \gamma)=\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})$. We shall seek the solution in the form of a series [5]

$$
\begin{gather*}
\varphi(\alpha, \beta, \gamma)= \\
=c^{2} U_{0} \dot{\cos \gamma \sqrt{\operatorname{ch} \beta-\cos \alpha} \sum_{n=1}^{\infty} B_{n} \operatorname{sh}\left(n+\frac{1}{2}\right) \beta_{1} P_{n}^{1}(\cos \alpha) .} \tag{3.2}
\end{gather*}
$$

The first condition of (3.1) is satisfied. In order to satisfy the second condition, we differentiate the known expansion with respect to α

$$
\begin{equation*}
\frac{1}{h-\cos \alpha}=\sum_{n=0}^{\infty}(2 n+1) Q_{n}(h) P_{n}(\cos \alpha) \tag{3.3}
\end{equation*}
$$

and comparing the result with $\partial \varphi / \partial \beta_{1}$ obtained from (3.2), we find that

$$
\begin{aligned}
& B_{n}=\frac{2 Q_{n}(h) \sqrt{h-\cos \alpha}}{\operatorname{ch}(n+1 / 2) \beta_{1}(m-\cos \alpha)} \\
& \left(m_{1}=h+\frac{c}{2 n+1} \mathrm{th}\left(n+\frac{1}{2}\right) \beta_{1}\right) .
\end{aligned}
$$

In particular, the expression for the potential on the surface of the sphere is of the form

$$
\begin{gather*}
\varphi(\alpha, \beta, \gamma)=-2 c U_{0} \cos \gamma\left[\frac{\sin \alpha}{h-\cos \alpha}+\right. \\
\left.+(h-\cos \alpha)^{2} \sum_{n=1}^{\infty} \frac{(2 n+1) Q_{n}(h)}{m_{1}-\cos \alpha} P_{n}(\cos \alpha)\right] . \tag{3.4}
\end{gather*}
$$

§4. The apparent mass coefficient of the sphere acting along the x-axis

$$
\lambda_{x}=-\frac{P_{i}}{\rho V U_{0}}\left(P_{t}=-\int_{(s)} p_{t} \cos (n, x) d s\right)
$$

Here P_{t} is the resultant of the impulsive pressure forces directed opposite to the motion of the sphere; V is the volume of the displaced fluid.

In the case of a partially submerged sphere, we have

$$
\begin{align*}
\lambda_{x:}(h)= & 2-1 \because \frac{(1-h)^{2}}{c(2-h)} \int_{0}^{\infty} \tau^{2} \frac{\operatorname{th} \pi \tau}{\operatorname{th} \beta_{0} \tau} d \tau \int_{0}^{\infty} \frac{\cos \tau t}{(\operatorname{ch} t-h)^{1 / 2}} d t \times \\
& <\int_{i}^{\infty}\left[\frac{c^{2}}{(\operatorname{ch} s-h)^{3 / 2}}+\frac{m_{0}^{2}-1}{\left(\operatorname{ch} s-m_{0}\right)^{3 / 2}}\right] \cos \tau s d s \tag{4.1}
\end{align*}
$$

In these calculations, we make use of known integral representations of associated Legendre functions [5].

If $\mathrm{h}>1$, then

$$
\begin{gather*}
\lambda_{x}(h)=2+ \\
+3 c^{3} \sum_{n=1}^{\infty} \frac{(2 n+1)^{2}}{\operatorname{lh}(n+1 / 2) \beta_{1}} Q_{n}(h)\left[c^{2} Q_{n}^{\prime}(h)-\left(m_{1}^{2}-1\right) Q_{n}^{\prime}\left(m_{1}\right)\right] \tag{4.2}
\end{gather*}
$$

Taking the asymptotic behavior of the functions Q_{n} and $Q_{n}{ }^{\prime}$ into consideration, we can obtain from (4.2) $\lambda_{X}(\infty)=1 / 2$, which corresponds to a sphere in an unbounded fluid [5].

The results of the calculations performed with formulas (4.1) and (4.2) with a relative error $\delta<2 \%$ are presented in the figure.

REFERENCES

1. E. L. Blokh, "Horizontal hydrodynamic impact of a sphere on a free fluid surface," PMM, vol. 17, no. 5, 1953.
2. V. I. Mossakovskii and V. L. Rvachev, "The problem of horizontal hydrodynamic impact of a sphere," PMM, vol. 22, no. 6, 1958.
3. L. I. Sedov, Two-Dimensional Problems of Hydrodynamics and Aerodynamics [in Russian], Gostekhizdat, 1950.
4. Ya. S. Uflyand, Integral Transforms in Problems of the Theory of Elasticity [in Russian], Izd-vo AN SSSR, 1963.
5. N. N. Lebedev, Special Functions and Their Applications [in Russian], Fizmatgiz, 1963.
6. E. V. Hobson, Theory of Spherical and Ellipsoidal Functions [Russian translation], Izd-vo inostr. lit., 1952.
